Optimal control in infinite horizon problems : a Sobolev space approach
نویسندگان
چکیده
In this paper, we make use of the Sobolev space W 1,1 (R+, Rn) to derive at once the Pontryagin conditions for the standard optimal growth model in continuous time, including a necessary and sufficient transversality condition. An application to the Ramsey model is given. We use an order ideal argument to solve the problem inherent to the fact that L1 spaces have natural positive cones with no interior points.
منابع مشابه
Solving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملApproximation properties of receding horizon optimal control
In this survey, receding horizon control is presented as a method for obtaining approximately optimal solutions to infinite horizon optimal control problems by iteratively solving a sequence of finite horizon optimal control problems. We investigate conditions under which we can obtain mathematically rigorous approximation results for this approach. A key ingredient of our analysis is the so-ca...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملPseudospectral Methods for Infinite-Horizon Optimal Control Problems
Acentral computational issue in solving infinite-horizonnonlinear optimal control problems is the treatment of the horizon. In this paper, we directly address this issue by a domain transformation technique that maps the infinite horizon to a finite horizon. The transformed finite horizon serves as the computational domain for an application of pseudospectral methods. Although any pseudospectra...
متن کاملFaggian Silvia and Gozzi Fausto Optimal investment models with vintage capital: Dynamic Programming approach
The Dynamic Programming approach for a family of optimal investment models with vintage capital is here developed. The problem falls into the class of infinite horizon optimal control problems of PDE’s with age structure that have been studied in various papers (see e.g. [11, 12], [30, 32]) either in cases when explicit solutions can be found or using Maximum Principle techniques. The problem i...
متن کامل